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Abstract-Based on a review of modern approaches that have been developed for modeling wall turbulence, a 
model of the transport mechanism associated with the turbulent burst phenomenon is concluded to provide 
the most sound and practical basis for generalization. This basic approach is used to formulate a general 
model for momentum transfer within the wall region for two-dimensional turbulent boundary layer flow. 
Attention is also focused on practical implications of this general turbulent burst model and application is 

made to fully turbulent flow with small pressure gradients. 

NOMENCLATURE 

Fanning friction factor ; 
mean turbulent kinetic energy ; 
pressure; 
mean burst period; 
dimensionless mean burst period 
(= Sv/W); 
process time ; 
axial component velocity distribution; 
dimensionless mean velocity distribution 
(= Ii/u*); 
y-component velocity distribution ; 
z-component velocity distribution; 
axial coordinate; 
distance from wall ; 
spanwise coordinate. 

Greek symbols 
E, mean turbulent dissipation ; 
Gil, eddy viscosity ; 

;, 
age ; 
age distribution; 

P> density ; 

51, Reynolds stress. 

Subscripts 

1, initial condition ; 
M interfacial condition. 

Superscripts 
, mean; 

fluctuating component. 

INTRODUCTION 

THE WALL region is of great practical and theoretical 
importance in wall-bounded turbulent flows. Flow 
visualization studies in steady two-dimensional turbu- 
lent boundary layers [l-8] have revealed that flow in 
this region consists ofcoherent vortex structures of low 
and high speed streaks alternating in the spanwise 

direction over the entire surface. These large scale 
elongated coherent structures have approximate 
streamwise and spanwise dimensionless mean dimen- 
sions of 1: 31 440 and A: N 50-100. The brief 
existence of such individual large scale elements within 
the wall region is associated with the turbulent burst 
process which includes both high axial velocity inrush 
and low axial velocity ejection phases. Because of the 
dynamic nature of the burst phenomenon, flow within 
the wall region in general and within individual 
coherent structures in particular is unsteady and three- 
dimensional in space, even though the mean flow field 
is only two-dimensional. 

As a consequence of flow visualization, anem- 
ometry, and electrochemical studies ofwall turbulence, 
use of the idea of a laminar sublayer in analyzing the 
wall region has been abandoned in recent years. The 
classical approach to analyzing transport in the wall 
region for steady two-dimensional turbulent boundary 
layer flows relies on the representation of turbulence 
characteristics in terms of mean and random fluctuat- 
ing components and involves the solution of the time 
average continuity and momentum equations 

(1) 

where - pu’u’ is the important component of the mean 

turbulent shear stress tensor (- pu$;). The several 
classical approaches differ in how the mean turbulent 
shear stresses are specified. Three turbulence modeling 
approaches to developing inputs for turbulent stresses 
that are currently receiving attention include: (1) 
damping factor methods, (2) kinetic energy K trans- 
port equation methods, and (3) turbulent stress trans- 
port equation methods. 

The first two of these methods employ the eddy 
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viscosity h concept in which the Reynolds stresses are 
assumed to be proportional to mean field gradients. 
For example, the pertinent mean turbulent stress - - 
z,( = -pu’u’) for two-dimensional turbulent boundary 
layer flow is given by 

Damping factor type models of wall turbulence have 
been undergoing a slow evolutionary process for more 
than two decades. In this approach, the unsteady one- 
dimensional (t, y) momentum equation is solved for the 
situation in which a plate oscillates longitudinally in a 
stationary fluid. The damping effect of the wall on E,,, is 
then inferred by discarding the unsteady terms in the 
solution for the instantaneous velocity distribution 
and by the use of several simplifying assumptions. The 
well known van Driest [9] damping factor approach 
has been adapted to several type flows with fair success 
[lo-171. As indicated by McEligot [18], the damping 
factor approach requires fewer adjustable constants 
than the transport equation models described by 
Launder and Spalding [19]. The damping factor 
formulation for eddy diffusivity E, is sometimes util- 
ized in modern numerical methods for analyzing the 
fluid flow aspects of turbulent boundary layers. But the 
generality and usefulness of the damping factor ap- 
proach is rather severely restricted because an artificial 
wall-fluid perspective is employed. 

In the kinetic energy transport equation approach 
to modeling turbulence, transport equations are writ- 
ten for mean turbulent kinetic energy K and other 
mean turbulent transport characteristics. The two- 
equation K--E transport equation approach is perhaps 
the most popular of the models of this type. (The 
transport equations for K and dissipation E are 
obtained from the Navier-Stokes and continuity equa- 
tions, and therefore have no independent fundamental 
character.) This approach has been applied with some 
success to the wall region [20-221. For example, Jones 
and Launder [20,2l] have developed a two-equation 
K--E model for transitional turbulent flow which 
involves the use of five empirical inputs. However, to 
account for the effects of low turbulent Reynolds 
number, rather arbitrary ad hoc assumptions (includ- 
ing damping factor corrections) have been employed in 
both the kinetic energy and the energy dissipation 
equations. As stated by the developers of these models, 
these assumptions for modeling wall turbulence still 
require further adjustments and refinements. 

One-equation kinetic energy transport equation 
models have also been adapted to the wall region with 
some success [23-281. However, the use of these 
models in the wall region generally involve van Driest 
type damping factor corrections for eddy viscosity. 
And the need to describe a length scale restricts the use 
of the one-equation model of turbulence to simple flow 
situations. 

It should be noted that eddy viscosity methods such 

as the damping factor and kinetic energy transport 
equation models suffer from the sometimes serious 

defect that 7: does not always vanish at the same 

location at which &i/?y goes to zero. For example, 7, is 
known to be nonzero at the locations in the wall region 
at which a peak occurs in the mean velocity for 
turbulent wall jet flow and natural convection on a 
vertical surface. This behavior is not unusual for flows 
with asymmetrical profiles of mean quantities [29]. 
The underlying problem is that c, (and for that matter 
Ed and Ed) are not trule scalar functions [30]. In an 
attempt to overcome this deficiency, mean turbulent 
stress transport equation models have been developed 
that avoid the use of equation (3). But this method 
generally involves the use of eddy diffusivity type 
assumptions for the transport of mean turbulent shear 
stress, and requires that the redistribution tensor and 
the dissipation tensor be modeled. To date, this task 
has not been satisfactorily accomplished for the wall 
region. Reynolds [31] and Launder [32] have in- 
dicated that it will be some time before models of this 
type are sufficiently well developed to be better than 
the simpler models for use in engineering analysis. 

Because of uncertainties and limitations in the 
classical approaches that have been developed for 
modeling wall turbulence, standard numerical com- 
putation schemes currently available generally avoid 
numerical calculations in the wall region by utilizing 
simplifying wall functions. The lack of a general and 
reliable theoretical model of wall turbulence is one of 
the main limitations of existing numerical approaches 
for analyzing turbulent transport processes. The au- 
thor of several of the computer programs that are 
widely used, Spalding, has suggested that the major 
work on modeling wall turbulence has yet to be done 
[33]. Spalding, Hubbard and Lightfoot [34]; Kays 
[35] ; Lawn [36] ; Liburdy et al. [37] ; and others have 
sounded the call for a new style of thinking on this 
critical problem. 

Alternative analysis approaches 
Two alternative approaches to modeling wall tur- 

bulence which do not employ the classical equation for 
mean momentum have been put forth in recent years. 
Both of these approaches focus attention on the 
transport mechanism that is associated with the large 
scale coherent structure. 

In the large eddy simulation approach, the unsteady 
three-dimensional Navier-Stokes equations for flow 
within a large scale eddy are transformed into large 
scale field equations by use of a statistical filter 
function. This spatial filtering precipitates additional 
unknowns in the form of Reynolds stresses and stress- 
like terms known as Leonard stresses. To solve the 
resulting large scale field equations, simplifying per- 
iodic boundary conditions are employed in the stream- 
wise and spanwise directions and a traditional eddy 
viscosity model with related empirical inputs is used 
for the subgrid scale stresses. Based on modeling and 
empirical inputs for the initial disturbance and mean 
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velocity profile, predictions have been developed for 
instantaneous velocity profiles, time averaged mean 
velocity profiles and turbulence statistics, and horizon- 
tally (xz plane) averaged turbulent quantities for fully 
turbulent, fully developed channel flow. This approach 
has been reported to characterize many of the impor- 
tant features of wall-bounded turbulent flows [38]. 
However, the formulation of the subgrid scale model 
for e,,, (or length scale) is not considered by the 
developers of this approach to be based on a well 
defined foundation. And, as already mentioned, the 
eddy viscosity concept has inerent weaknesses. The 
gap in computing time between the transport equation 
models and large eddy simulations is a large one, and it 
will be some time before this technique can be used for 
calculating flows of practical interest [31, 381. 

A second alternative approach to analyzing turbu- 
lent transport within the wall region has evolved which 
treats wall turbulence as an unsteady transport phenom- 
enon, without the use of classical eddy viscosity 

assumptions for 6, and without the need for develop- 
ing higher order mean turbulent transport equations 
for kinetic energy, dissipation, or stresses. In this 
approach, unsteady transport of mass and momentum 
associated with the turbulent burst process is modeled, 
with a transformation into the mean domain being 
accomplished by the use of a statistical age distribution 
concept. The solution of the resulting mean transport 
equations for continuity and momentum gives rise to 
direct predictions for the mean velocity distribution 
within the wall region in terms of the mean frequency 
of the turbulent burst process S. 

This basic turbulent burst (or surface renewal) 
model has been adapted to standard wall bounded 
turbulent flow processes by Einstein and Li [39], 
Hanratty [40] and others (e.g. [41-481). However, 
because this approach does not involve the use of the 
traditional eddy viscosity concept, surface renewal 
formulations for mean momentum transport within 
the wall region have essentially been developed outside 
the framework of the classical approaches to 
turbulence. 

The surface renewal model of wall turbulence is 
somewhat similar to the van Driest [9] damping factor 
model. However, in this approach to modeling turbu- 
lent transport associated with the burst process, the 
fluid is taken as the fluctuating or intermittent medium 
with the relative velocity of the fluid at the wall 
appropriately set equal to zero, and the contribution of 
the unsteady fluctuating velocity distribution to the 
mean profile is accounted for statistically. As pointed 
out by Reynolds [49], the fundamental advantage of 
the surface renewal approach is its relation to a specific 
and not unrealistic picture of events in the viscous 
sublayer. 

This basic approach will now be used to formulate a 
general model of the turbulent burst process for two- 
dimensional turbulent boundary layer flow, after 
which application will be made to fully turbulent flow 
with small pressure gradients. 

GENERAL SURFACE RENEWAL MODEL 
FORMULATION 

In the surface renewal approach to modeling wall 
turbulence, instantaneous transport equations are first 
written for the mass and momentum transfer as- 
sociated with the life of an individual large scale 
coherent structure within the wall region. During the 
time between inrush and ejection over which the 
coherent structure resides within the wall region, the 
unsteady three-dimensional (t, x, y, z) flow field within 
the element is represented by the Navier-Stokes 
equations 

duj-0 
axj - 

aui aui ah, i ap 
z+Ujdx=vY--- 

P axi I J 

(5) 

and appropriate initial and boundary conditions; the 
age 0 is equal to zero at the instant of inrush. 
[Equations of the form of equations (4) and (5) provide 
the starting point in the large scale eddy simulation 
approach, except that real process time t is used 
instead of the eddy age 0.1 

Based on experimental data by Kim et al. [6], the 
inrush process can be assumed to be essentially 
instantaneous. Therefore, the important contribution 
of the inrush or surface renewal process to the transfer 
of momentum is accounted for by the initial condition 

ui = Uli, at 0=0 (6) 

where U,i represents the velocity distribution at the 
instant of inrush. 

Turning to the boundary conditions, the wall con- 
ditions and interfacial conditions between the wall 
region and the turbulent core can be modeled with 
reasonable confidence. These conditions are written as 

Ui = 0, at y=O (7) 

ui = UMi, at y = YM (8) 

where uMi is time dependent. On the other hand, the 
unsteady streamwise and spanwise boundary con- 
ditions are complex and difficult to handle. It is these 
latter boundary conditions that are necessary to 
formally account for the interaction between adjacent 
large scale coherent structures. 

According to flow visualization studies, the coherent 
structures of low and high speed large scale streaks 
alternate in the spanwise direction over the entire wall. 
At any instant of real (process) time t, the many large 
scale elements residing within the wall region can be 
assumed to have ages ranging from zero to relatively 
large values. (In general, the high speed elements will 
have small values of 0 and the low speed coherent 
structures will have relatively larger values of 0.) The 
unsteady three-dimensional flow within the entire wall 
region at any instant t is therefore represented by 
equations of the form of equations (4)-(g), with the 
values of 8, Uli, uMi, and the streamwise and spanwise 
boundary conditions being dependent upon the his- 
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FIG. 1. Flow path in a single Emmons spot. The height of the spot is enlarged ten times. A Lagrangian 
coordinate system is used. After Cantwell et al. [SS]. 

tory of each individual element. 
The flow which is associated with this process is 

envisioned to involve an unsteady three-dimensional 
vortex pattern entrainment of fluid into the high speed 
large scale coherent structure from adjacent low speed 
areas. Consistent with this view, over the lifetime of an 
individual element within the wall region, fluid influx 
occurs for small values of 0 and fluid efflux occurs for 
large values of 0. This general perspective is reinforced 
by the flow field anatomy of a single Emmons spot 
which is shown in Fig. 1. (The lines and arrows which 
indicate the paths of fluid particles entering the spot 
were obtained by Laser-Doppler anemometry and 
ensemble averaging.) 

Recognizing that at any instant of time t the wall 
flow field consists of many interacting but coherent 
structures, the mean (ensemble average) distribution $ 
in velocity and other characteristics over the entire 
surface is related to the instantaneous distribution II/ in 
each of a large number of samples by 

where 4(0, si) is the statistical age distribution, Sis the 
mean turbulent burst frequency, and PC,(&) represents 
the probability distributions in the statistical initial 
distribution U,i and interfacial condition uhli (Accord- 
ing to the ergodic hypothesis, time t and ensemble 
averages are identical for stationary processes, such 
that 1,6 represents the time average distribution for the 
steady two-dimensional turbulent flow problem under 
consideration.) 

The statistical age distribution is defined such that 
the product 4(0, gd8 represents the fraction of 
coherent structures with age between 0 and 0 + df?. 
Furthermore, 4(0, q must satisfy the equation 

r” $(e, S)dH = 1. (10) 
Jo 

Based on preliminary studies, predictions for ui ob- 
tained on the basis of equation (9) have been found to 
be strongly dependent upon the magnitude of S; but are 

fairly insensitive to the form of d(0, q. Therefore, the 
convenient Danckwerts [SO] exponential distribution 
is used, i.e. 

d(e, sq = sexp (-es?. (11) 

The instantaneous equations given by equations 
(4)-(g) are transformed into the mean domain by the 
use of equations (9) and (lo), with the result 

du,_ 
dxj - 

0 (12) 

au. a2ui 1 aP 
$Ui - Uu) + u.- = Vz - -- . (13) 

’ ?Xj J P 8x, 

and 

where 

u, = 0, aty=O 

ui=uMi, aty=y, 

(14) 

(15) 

uri Ptf,,(uri) dfJ,i. (16) 

Modeling approximations for U,i will be introduced 
later. The completion of a formal three-dimensional 
formulation would necessitate a transformation of 
appropriate streamwise and spanwise boundary con- 
ditions into the mean domain. (This complication was 
dealt with in the large scale eddy simulation work of 
Moin rt al. [38] by the use of periodic boundary 
conditions at the sides of their computational box in 
the filtered large scale field.) However, pragmatic 
considerations to be put forth momentarily will pro- 
vide a means of circumventing this problem for many 
practical cases. 

Whereas the classical approaches and the large scale 
eddy simulation method introduce unknown Rey- 
nolds stress tensor terms in the transformed mean 
flow equations, the transformation of the fundamental 
instantaneous equations in the surface renewal ap- 

proach introduces terms of the form S(U~ - CJu) and ui 

?ui/axi. The important eddy transport mechanism 
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associated with the inrush process is accounted for by 

the term $ti - Un). The term u, c?u,/c?x~ (together with 
the formal boundary conditions) represents the un- 
steady three-dimensional convective interaction be- 
tween individual coherent structures and the sur- 
rounding fluid. The contribution of this complex 
convective vortex interaction to the establishment of 
the mean flow field is apparently minimized by the fact 
that the momentum influx to individual coherent 
structures over small values of age 0 tends to be 
balanced by the momentum efflux during old age. 
Thus, it appears that the augmentation of, mean 
transport by the turbulent burst process is primarily 

accounted for by the term q& - U,i). 
For steady two-dimensional turbulent boundary 

layer flow, Wand all derivatives of mean characteristics 
with respect to z are zero. For this case, the mean flow 
field (i.e. ti, 6, ?p/ldy) is represented by the continuity 
equation and the x- and y-component momentum 
equations 

Z+““=O (17) 
dx dy 

au au au 
sfli - U,,) + u- + u- + w- 

ax sy az 

++$)-;g (18) 

au a0 au 
q(cT- U,2) + llIx + u- + WI 

dY 

and accompanying boundary conditions. [Although 
equation (19) provides a theoretical basis for predict- 
ing aPlay, this equation is not needed in practice since 
this term is known to be small.] 

The z-component momentum equation reduces to 

aw ?W -su,,+ujx+o-+w~=o. 
?Y 

(20) 
z 

Based on the physics of the problem, the z- (and y-) - __ 
component initial velocity distribution U,, (and U,,) 

is much smaller than the axial component U I 1. With 

U, 3 assumed to be small, equation (20) indicates that 

the term ujdw/dxj is small, which reinforces the 
assumption that the effects of the three-dimensional 
convective interaction on the mean flow field are 
secondary. 

Equations (17)-( 19) and appropriate boundary 
conditions provide a theoretical basis for predicting 
the mean turbulent characteristic ii, V; and aP/ldy. The 
formal solution of these equations in full form would 
first necessitate : (1) the specification of instantaneous 
streamwise and spanwise boundary conditions, (2) the 
solution of the instantaneous formulation [equations 
(4) and (5), initial conditions, and boundary con- 

ditions] for u, u, and w, and (3) a transformation to 

obtain uj au/ax, and uj &/ax,. However, because the 
convective interaction terms appear to be secondary 
for many practical problems, equation (17)-(19) pro- 
vide the basis for a simplified form of the surface 
renewal model that does not require the complex 
boundary condition formulation and computational 
effort associated with steps (l)-(3). 

To provide a basis for rational simplification of the 
modeling equations, it is noted that as s approaches 

zero, the term uj dui/axj clearly reduces to tij dtii/irxj 
and equations (17)-(19) reduce to the appropriate 

form for laminar conditions. Assuming that uj dui/Sxj 
can be approximated by tij &ii/dxj and recognizing 
that &i/ax2 is generally very small, the surface renewal 
formulation for two-dimensional turbulent boundary 
layer flow reduces to [using equation (17)] 

u = 0, aty=O 
- 

u = UM1, at y = YM 

v= 0, aty=O 

and the single streamwise condition 

(22) 

(23) 

(24) 

u= u,, at x = 0. (25) 

A practical application of this surface renewal model 
formulation is now briefly reviewed. 

Application : fully turbulent boundary layer pow 
For fully turbulent boundary layer flows with small 

pressure gradients, the effects of the convective terms 
and the pressure gradient term are insignificant within 
the wall region, such that the surface renewal for- 
mulation given by equations (17) and (21)-(25) reduces 
to the more manageable form 

u-u _,e- 
I1 - dy2 

with the boundary conditions given by equations (22) _- 
and (23). To close the model, U,,, uMl, y,, and smust 
be specified. 

Similar simplified surface renewal model formu- 
lations that neglect the effects of convective interaction 
have been developed over the past few years for 
turbulent energy and momentum transfer in the wall 
region ([39]-[48] and others)?. These analyses differ 
primarily in how the initial condition U,, and the 
interfacial condition at y, are handled. 

According to flow visualization studies for fully 
turbulent internal flow by Popovich and Hummel 
[51], the inrush process carries fluid to within various 
small distances of the wall, with the mean approach 
distance H’ approximately equal to 5.0. It follows that 

t In most of these analyses, the transformation associated 
with equation (9) is made after the simplified instantaneous 
equations are solved for u(O). 
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the initial profile U,, must be random and nonlinear. 
However, for practical purposes involving the develop- 
ment of first order predictions for momentum transfer, 
the modeling approximation 

U,, = U,, = U,, (27) 
is often used, where U,, is uniform. Models of this type 
developed by Einstein and Li [39]; Hanratty [40]; 
and others [41-481 lead to practical laws for u+ in the 
wall region which are in basic agreement with exper- 
imental data. More comprehensive models which ac- 
count for the effect of the unreplenished layer of fluid at 
the surface have been developed by Harriott [52]; 
Bullin and Duker [53]; and Thomas er al. [54, 551. 
This type model, which is sometimes referred to as the 
surface rejuvenation model, provides a basis for de- 
veloping higher order predictions for u+ as well as 
predictions for the Reynolds stress, mixing length, and 
eddy diffusivity (or turbulent Prandtl number) very 
near the wall. 

With respect to the interfacial conditions, most 
surface renewal model formulations published to date 
make use of the simplification 

17 = u,,, as y + X. (28) 

Model closure was accomplished in the early analyses 
of refs [39-471 by merely setting U,, equal to the bulk 
stream velocity U, (or free stream velocity U ,) and by 
specifying the friction factor, or by specifying u+ at a 
point in the outer wall region. More recently [48], 
closure has been affected by interfacing the wall model 
with a classical eddy viscosity model for the turbulent 
core at the point at which continuity is maintained in 
u+ and du+/dy+. But the use of equation (28) in the 
analyses of refs [39-48] gives rise to predictions for ut 
which must be truncated at y$. To achieve a higher 
order interface that produces smooth and continuous 
predictions for u+ throughout the entire inner region, 
the more general interfacial boundary condition is 
now employed. 

The solution to equations (22) (23), and (26) with 

U,, = U,, gives rise to an expression for the dimen- 
sionless mean velocity distribution u+ (= Is/U*) of the 
form 

U+ = {uG1 sinh (Y+Js+) + Uz [sinh (y;Js’) 

- sinh (y’,/s’) - sinh ((y; - y+)Js+)]} 

1 

’ sinh (YGJs+) 

where s+ = SvJV2. An independent relationship 
between s+, UL, ui,, and y$ is obtained on the 
basis of the Newton law of viscous shear (r,/p = U*’ 
= vdl@y lo) 

au+ 

aY+ 0 

=l (30) 

l=, Js’ 
smh ( yGJs+) 

i41 + G Cc-h (YGJs’) 

- 11). (31) 

Three additional independent equations are written 
for s+, U,ic, u;,, and y; by requiring continuity in u + , 
Su+/dy+, and c?~u+JSY+~ at the interface between the 
wall region and the turbulent core. Based on the 
traditional mixing length model, the momentum equa- 
tion in the overlap region for fully turbulent flow with 
small pressure gradient takes the form 

where I+ = KY+ It follows that at the interface y+ = 
y;, u+, &A+/iy+ and ?2u+/?y+2 are given by 

U+ 1 C + Llny; (33) 
K 

hi+ 1 ---~“-- 
dYf KY; 

(34) 

where K = 0.41 for boundary layer flows. 
With s+ specified on the basis of experimental data, 

the values of C, UG, u,+,, and yi for which u+ satisfies 
equations (31) and (33))(35) can be computed by 
algebraic elimination and iteration. Alternatively, with 
C specified, s+, UL, u;,, and y; can be computed. 
Following the second approach with C set equal to 5.0, 
the hydrodynamic modeling parameters are found to 
bes+ = 1/l4.942, iJ2 = 14.93, u$ = 14.73,andyG = 
52.45. This prediction for s+ is shown in Fig. 2 to be 
compatible with experimental data for the mean 
period of the turbulent burst process for boundary 
layer flow with uniform free stream velocity and for 
fully developed tube flow. 

The overall inner law for u+ takes the form 

U+ = 14.93 - 0.01196 sinh 

- 0.8929 sinh (52’;:,,Yt ), y+ 7 52.45 (36a) 

u+ = 5.0 + &lnY+, y+ 5 52.45. (36b) 

Equation (36) is compared with experimental data and 
the familar van Driest [9] equation in Fig. 3. 

To complete the analysis, the inner laws can be 
coupled with equations for u+ obtained by classical 
methods in the outer region. Predictions can then be 
obtained for the Fanning friction factor 1: 

As suggested earlier, more comprehensive surface 
renewal analyses have been developed which account 

for the effect of the unreplenished layer of fluid on U,, 
However, the simpler surface renewal analysis de- 
veloped in this paper is judged to be quite adequate for 
analyzing turbulent momentum transfer in the wall 
region for boundary layer flows with small pressure 
gradients. 
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FIG. 2. Experimental data and theoretical predictions for mean period of turbulent burst. Reynolds number : 
Re = D,U,/v for tube flow and Re = 26V,/v for boundary layer flow. 

Symbol 
Type 
flow Fluid 

Measurement 
location y+ Method Ref. 

I-l 

: 
0 
n 
A 

: 
A 
V 
+ 
x 

BL 
BL 
BL 
BL 
BL 
BL 
TF 

TF 
TF 
TF 
TF 
TF 
TF 

water 
water 

air 
air 
air 

water 
trichloro- 
ethylene 

air 
air 
air 

tetraline 
air 

water 

15 
15 

wall 
wall 
10 
>o 
>o 

wall 
wall 

2 
wall 
7.56 
>o 

TF, fully developed tube flow. 
BL, boundary layer flow over flat plate. 

Experimental data by 
Anderson et d C 57 3 

van Driest C 9 3 
15 

+ 
3 

IO 

5 

0 
2 5 IO 50 100 1000 

Y+ 

FIG. 3. Experimental data and inner laws for u+ for turbulent 
boundary layer flow with uniform free stream velocity. 

CONCLUSION 

Of the models that have been developed for wall 
turbulence, the transport equation and large eddy 
simulation methods appear to be in the earliest stages 
of development, involve the highest degree of em- 
piricism, and necessitate the greatest computer time 

visual 
visual 

anemometer 
anemometer 
anemometer 
anemometer 

visual 

pressure 
anemometer 
anemometer 
anemometer 
anemometer 
anemometer 

and storage. The one-equation K transport equation 
model is the only one of these advanced approaches 
that have been sufficiently tested in the wall region, but 
even this method involves excessive computer costs 
[56]. Because of computational considerations and 
because of the complicated nonisotropic nature of 
turbulence in the wall region, it may be best to reserve 
the advanced turbulence models for use in the turbu- 
lent core. 

The damping factor approach has been of great 
value in the early years of wall turbulence model 
development, but appears to be too artificial to be 
extended further. 

The simplest, least empirical, and most compu- 
tationally efficient of the approaches to modeling wall 
turbulence is the surface renewal method. This model 
of the turbulent burst phenomenon is felt to provide a 
practical approach to analyzing transport within the 
wall region. The analysis developed in this paper for 
fully turbulent boundary layer flow with small press- 
ure gradients gives rise to a convenient analytical 
inner law for u+ which is in excellent agreement with 
experimental data. When interfaced with a traditional 
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mixing length representation for the turbuient core. 
this approach requires the specification of the single 
wall modeling parameter s+. With the parameter C in 
the overlap law specified instead of .sI. the modeling 
predictions for the dimensionless mean burst fre- 
quency S+ are compatible with experimental data. 

The general surface renewal formulation developed 
in this paper is felt to provide a fundamental basis for 
generalization to account for the major effects of 
complicating factors such as strong adverse and favor- 
able pressure gradients. transpiration, and heat and 
mass transfer. In this connection, the surface renewal 
approach provides a means of modeling the complex 
three-dimensional convective vortex interaction be- 
tween large scale coherent structures having random 
phases in the wall region. The formal inclusion of the 

convective interaction term uj ?ui/?xj in the analysis 
will require the solution of the instantaneous for- 
mulation for U, L‘, and wand statistical transformation. 

Parenthetically, the term uj C?U~/?.Y~ accounts for con- 
vection to coherent structures that are created by the 
inrush process but does not account for the eddy 
transport associated with the inrush process itself. 
[The inrush eddy transport mechanism is modeled by _.._ 
the term ?(U - U,i).] Because measurements for flue- 
tuating components (particularly I”) are dominated by 

the inrush process. the representation of uj ?u,/?xj in 
terms of the traditional Reynolds stress by the use of 
mean and fluctuating components would appear to 
have no physical basis. 
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UN MODELE DE BOUFFEE TURBULENTE POUR LA TURBULENCE PARIETALE EN 
ECOULEMENT DE COUCHE LIMITE TURBULENTE ET BIDIMENSIONNELLE 

R&umb-BasC sur une analyse des approches modernes qui ont etc developp&s pour modCliser la 
turbulence, un modtle de micanisme de transport associi au phtnom&ne de bouffke turbulente foumit une 
base pratique et la plus solide pour une ghntralisation. Cette approche est utilis& pour formuleiun modZle 
g&&al pour le transfert de qutitite de mouvement dans la &ion pa&ale d’une couche limite turbulente 
bidimensionnelle. L’attention est focaliske sur les implications pratiques de ce mddble g&&al des boutT&s et 

une application est faite B l%coulement pleinement turbulent avec de faibles gradients de pression. 

EIN MODELL DES TURBULENTEN BERSTENS DER WANDTURBULENZ FOR 
ZWEIDIMENSIONALE TURBULENTE GRENZSCHICHTSTRC)MUNG 

Zusammenfassung-Auf der Grundlage modemer Nlherungsverfahren fiir die Berechnung der 
Wandturbulenz wurde ein Model1 des Transportmechanismus, das mit dem Phlnomen des turbulenten 
Berstens zusammenhtigt, als die solideste und praktischste Basis fiir eine Verallgemeinerung ausgewalt. 
Hiervon ausgehend wird ein allgemeines Model1 fiir die Impulsiibertragung innerhalb der Wandregion 
zweidimensionaler turbulenter Grenzschichtstrtimungen formuliert. Dabei richtet sich das Interesse such 
auf praktische Folgerungen aus diesem allgemeinen Model1 des turbulenten Berstens, und es wird auf 

vollstlndig turbulente Striimung bei kleinen Druckgradienten angewandt. 
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MOAEJlb LlPMCTEHHOti TYPIGYJIEHTHOCTM IlPM ABYMEPHOM TYPliYJlEHTHOM 
TEqEHMM B nOI-PAHMqHOM CJIOE. OCHOBAHHAR HA IlBJlEHMM (tBbI6POCA>> 

AwoTauw- Ha OCHOBe IlpOBe~eHHOrO 0630pa COBpeMeHHbIX MeTODOB MOne,,HpOBaHHR np&,CTeHHOii 

TYp6YncHTHOCTH paspa60TaHa MOlleJb MeXaHH3Ma UepeHOCa IlpH Typ6yJleHTHOM Bbr6pOCe, "03805151- 

K)UlaR npOBOlNiTb TO'lHble )1 npaKTHWCKB IlOJle3HbIe o6o6ueHsn. MeTon WCnO,,b30BaH JYUUI $,OpMyJW 

pOBKM o6meii MOneJlH IlepeHOCa llMQ'J,bCa B npRCTeHHOti o6nacTki npH nB,'MepHOM TYp6YJleHTHOM 

Te'feHHM BIlOrpaHWHOM CnOe.Oco6oe BHAMaHRe o6pameHo Ha 803M0,KHOCTb npaKTW,eCKOrO IIC"O,,b- 

SOBaHC(II llpeNlO?KeHHOti MO&ZtlHTyp6yJieHTHO~O BbI6pOCa. Ha ee OCHOBe rlpOBeneH paCYeT nO,,HOCTblO 
pa3BmOrO Typ6yneHTHOrO Te'ieHHIl npki He60nbwuX rpanllewax IlaBneHlis. 


