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Abstract—Based on a review of modern approaches that have been developed for modeling wall turbulence, a

model of the transport mechanism associated with the turbulent burst phenomenon is concluded to provide

the most sound and practical basis for generalization. This basic approach is used to formulate a general

model for momentum transfer within the wall region for two-dimensional turbulent boundary layer flow.

Attention is also focused on practical implications of this general turbulent burst model and application is
made to fully turbulent flow with small pressure gradients.

NOMENCLATURE
f Fanning friction factor;
K, mean turbulent kinetic energy;
D, pressure;
s, mean burst period;
st dimensionless mean burst period
(= sv/U*?);
t, process time ;
u, axial component velocity distribution ;
u*, dimensionless mean velocity distribution
(= q/U%);
v, y-component velocity distribution;
w, z-component velocity distribution;
X, axial coordinate;
¥ distance from wall;
z, spanwise coordinate.
Greek symbols
£, mean turbulent dissipation;
Em» eddy viscosity;
0, age;
¢, age distribution;
o density;
Ty Reynolds stress.
Subscripts
1, initial condition ;

M, interfacial condition.

Superscripts
,  mean;
, fluctuating component.

’

INTRODUCTION

THE WALL region is of great practical and theoretical
importance in wall-bounded turbulent flows. Flow
visualization studies in steady two-dimensional turbu-
lent boundary layers [1-8] have revealed that flow in
this region consists of coherent vortex structures of low
and high speed streaks alternating in the spanwise

direction over the entire surface. These large scale
elongated coherent structures have approximate
streamwise and spanwise dimensionless mean dimen-
sions of 7 ~ 440 and 1] =~ 50-100. The brief
existence of such individual large scale elements within
the wall region is associated with the turbulent burst
process which includes both high axial velocity inrush
and low axial velocity ejection phases. Because of the
dynamic nature of the burst phenomenon, flow within
the wall region in general and within individual
coherent structures in particular is unsteady and three-
dimensional in space, even though the mean flow field
is only two-dimensional.

As a consequence of flow visualization, anem-
ometry, and electrochemical studies of wall turbulence,
use of the idea of a laminar sublayer in analyzing the
wall region has been abandoned in recent years. The
classical approach to analyzing transport in the wall
region for steady two-dimensional turbulent boundary
layer flows relies on the representation of turbulence
characteristics in terms of mean and random fluctuat-
ing components and involves the solution of the time
average continuity and momentum equations
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where — pu'v’ is the important component of the mean
turbulent shear stress tensor (—puiu}). The several
classical approaches differ in how the mean turbulent
shear stresses are specified. Three turbulence modeling
approaches to developing inputs for turbulent stresses
that are currently receiving attention include: (1)
damping factor methods, (2) kinetic energy K trans-
port equation methods, and (3) turbulent stress trans-
port equation methods.

The first two of these methods employ the eddy

(1)
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viscosity ¢, concept in which the Reynolds stresses are
assumed to be proportional to mean field gradients.
For example, the pertinent mean turbulent stress

7,(= — pu'v’) for two-dimensional turbulent boundary
layer flow is given by
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Damping factor type models of wall turbulence have
been undergoing a slow evolutionary process for more
than two decades. In this approach, the unsteady one-
dimensional (¢, y) momentum equation is solved for the
situation in which a plate oscillates longitudinally in a
stationary fluid. The damping effect of the wall on ¢, is
then inferred by discarding the unsteady terms in the
solution for the instantaneous velocity distribution
and by the use of several simplifying assumptions. The
well known van Driest [9] damping factor approach
has been adapted to several type flows with fair success
[10-17]. As indicated by McEligot [18], the damping
factor approach requires fewer adjustable constants
than the transport equation models described by
Launder and Spalding [19]. The damping factor
formulation for eddy diffusivity ¢, is sometimes util-
ized in modern numerical methods for analyzing the
fluid flow aspects of turbulent boundary layers. But the
generality and usefulness of the damping factor ap-
proach is rather severely restricted because an artificial
wall-fluid perspective is employed.

In the kinetic energy transport equation approach
to modeling turbulence, transport equations are writ-
ten for mean turbulent kinetic energy K and other
mean turbulent transport characteristics. The two-
equation K—¢ transport equation approach is perhaps
the most popular of the models of this type. (The
transport equations for K and dissipation ¢ are
obtained from the Navier—Stokes and continuity equa-
tions, and therefore have no independent fundamental
character.) This approach has been applied with some
success to the wall region [20-22]. For example, Jones
and Launder [20, 21] have developed a two-equation
K-¢ model for transitional turbulent flow which
involves the use of five empirical inputs. However, to
account for the effects of low turbulent Reynolds
number, rather arbitrary ad hoc assumptions (includ-
ing damping factor corrections) have been employed in
both the kinetic energy and the energy dissipation
equations. As stated by the developers of these models,
these assumptions for modeling wall turbulence still
require further adjustments and refinements.

One-equation Kkinetic energy transport equation
models have also been adapted to the wall region with
some success [23-28]. However, the use of these
models in the wall region generally involve van Driest
type damping factor corrections for eddy viscosity,
And the need to describe a length scale restricts the use
of the one-equation model of turbulence to simple flow
situations.

It should be noted that eddy viscosity methods such
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as the damping factor and kinetic energy transport
equation models suffer from the sometimes serious
defect that 7, does not always vanish at the same
location at which éu/dy goes to zero. For example, 1, is
known to be nonzero at the locations in the wall region
at which a peak occurs in the mean velocity for
turbulent wall jet flow and natural convection on a
vertical surface. This behavior is not unusual for flows
with asymmetrical profiles of mean quantities [29].
The underlying problem is that ¢, (and for that matter
ex and ¢,) are not trule scalar functions [30]. In an
attempt to overcome this deficiency, mean turbulent
stress transport equation models have been developed
that avoid the use of equation (3). But this method
generally involves the use of eddy diffusivity type
assumptions for the transport of mean turbulent shear
stress, and requires that the redistribution tensor and
the dissipation tensor be modeled. To date, this task
has not been satisfactorily accomplished for the wall
region. Reynolds [31] and Launder [32] have in-
dicated that it will be some time before models of this
type are sufficiently well developed to be better than
the simpler models for use in engineering analysis.

Because of uncertainties and limitations in the
classical approaches that have been developed for
modeling wall turbulence, standard numerical com-
putation schemes currently available generally avoid
numerical calculations in the wall region by utilizing
simplifying wall functions. The lack of a general and
reliable theoretical model of wall turbulence is one of
the main limitations of existing numerical approaches
for analyzing turbulent transport processes. The au-
thor of several of the computer programs that are
widely used, Spalding, has suggested that the major
work on modeling wall turbulence has yet to be done
[33]. Spalding, Hubbard and Lightfoot [34]; Kays
[35]; Lawn [36]; Liburdy et al. [37]; and others have
sounded the call for a new style of thinking on this
critical problem.

Alternative analysis approaches

Two alternative approaches to modeling wall tur-
bulence which do not employ the classical equation for
mean momentum have been put forth in recent years.
Both of these approaches focus attention on the
transport mechanism that is associated with the large
scale coherent structure.

In the large eddy simulation approach, the unsteady
three-dimensional Navier-Stokes equations for flow
within a large scale eddy are transformed into large
scale field equations by use of a statistical filter
function. This spatial filtering precipitates additional
unknowns in the form of Reynolds stresses and stress-
like terms known as Leonard stresses. To solve the
resulting large scale field equations, simplifying per-
iodic boundary conditions are employed in the stream-
wise and spanwise directions and a traditional eddy
viscosity model with related empirical inputs is used
for the subgrid scale stresses. Based on modeling and
empirical inputs for the initial disturbance and mean
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velocity profile, predictions have been developed for
instantaneous velocity profiles, time averaged mean
velocity profiles and turbulence statistics, and horizon-
tally (xz plane) averaged turbulent quantities for fully
turbulent, fully developed channel flow. This approach
has been reported to characterize many of the impor-
tant features of wall-bounded turbulent flows [38].
However, the formulation of the subgrid scale model
for ¢, (or length scale) is not considered by the
developers of this approach to be based on a well
defined foundation. And, as already mentioned, the
eddy viscosity concept has inerent weaknesses. The
gap in computing time between the transport equation
models and large eddy simulations is a large one, and it
will be some time before this technique can be used for
calculating flows of practical interest [31, 38].

A second alternative approach to analyzing turbu-
lent transport within the wall region has evolved which
treats wall turbulence as an unsteady transport phenom-
enon, without the use of classical eddy viscosity

assumptions for 1,, and without the need for develop-
ing higher order mean turbulent transport equations
for kinetic energy, dissipation, or stresses. In this
approach, unsteady transport of mass and momentum
associated with the turbulent burst process is modeled,
with a transformation into the mean domain being
accomplished by the use of a statistical age distribution
concept. The solution of the resulting mean transport
equations for continuity and momentum gives rise to
direct predictions for the mean velocity distribution
within the wall region in terms of the mean frequency
of the turbulent burst process $.

This basic turbulent burst (or surface renewal)
model has been adapted to standard wall bounded
turbulent flow processes by Einstein and Li [39],
Hanratty [40] and others (e.g. [41-48]). However,
because this approach does not involve the use of the
traditional eddy viscosity concept, surface renewal
formulations for mean momentum transport within
the wall region have essentially been developed outside
the framework of the classical approaches to
turbulence.

The surface renewal model of wall turbulence is
somewhat similar to the van Driest [9] damping factor
model. However, in this approach to modeling turbu-
lent transport associated with the burst process, the
fluid is taken as the fluctuating or intermittent medium
with the relative velocity of the fluid at the wall
appropriately set equal to zero, and the contribution of
the unsteady fluctuating velocity distribution to the
mean profile is accounted for statistically. As pointed
out by Reynolds [49], the fundamental advantage of
the surface renewal approach is its relation to a specific
and not unrealistic picture of events in the viscous
sublayer.

This basic approach will now be used to formulate a
general model of the turbulent burst process for two-
dimensional turbulent boundary layer flow, after
which application will be made to fully turbulent flow
with small pressure gradients.
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GENERAL SURFACE RENEWAL MODEL
FORMULATION

In the surface renewal approach to modeling wall
turbulence, instantaneous transport equations are first
written for the mass and momentum transfer as-
sociated with the life of an individual large scale
coherent structure within the wall region. During the
time between inrush and ejection over which the
coherent structure resides within the wall region, the
unsteady three-dimensional (¢, x, y, z) flow field within
the element is represented by the Navier—Stokes
equations
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and appropriate initial and boundary conditions; the
age 0 is equal to zero at the instant of inrush.
[Equations of the form of equations (4) and (5) provide
the starting point in the large scale eddy simulation
approach, except that real process time t is used
instead of the eddy age 6.]

Based on experimental data by Kim et al. [6], the
inrush process can be assumed to be essentially
instantaneous. Therefore, the important contribution
of the inrush or surface renewal process to the transfer
of momentum is accounted for by the initial condition

u="U, at =0 6)

where U, represents the velocity distribution at the
instant of inrush.

Turning to the boundary conditions, the wall con-
ditions and interfacial conditions between the wall
region and the turbulent core can be modeled with
reasonable confidence. These conditions are written as

=0, aty=0 (M

at y=yy ®)

where uy; is time dependent. On the other hand, the
unsteady streamwise and spanwise boundary con-
ditions are complex and difficult to handle. It is these
latter boundary conditions that are necessary to
formally account for the interaction between adjacent
large scale coherent structures.

According to flow visualization studies, the coherent
structures of low and high speed large scale streaks
alternate in the spanwise direction over the entire wall.
At any instant of real (process) time ¢, the many large
scale elements residing within the wall region can be
assumed to have ages ranging from zero to relatively
large values. (In general, the high speed elements will
have small values of 6 and the low speed coherent
structures will have relatively larger values of 6.) The
unsteady three-dimensional flow within the entire wall
region at any instant ¢ is therefore represented by
equations of the form of equations (4)-(8), with the
values of 8, Uy, uy;, and the streamwise and spanwise
boundary conditions being dependent upon the his-

U = Ups
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F1G. 1. Flow path in a single Emmons spot. The height of the spot is enlarged ten times. A Lagrangian
coordinate system is used. After Cantwell ez al. [58].

tory of each individual element.

The flow which is associated with this process is
envisioned to involve an unsteady three-dimensional
vortex pattern entrainment of fluid into the high speed
large scale coherent structure from adjacent low speed
areas. Consistent with this view, over the lifetime of an
individual element within the wall region, fluid influx
occurs for small values of 8 and fluid efflux occurs for
large values of 6. This general perspective is reinforced
by the flow field anatomy of a single Emmons spot
which is shown in Fig. 1. (The lines and arrows which
indicate the paths of fluid particles entering the spot
were obtained by Laser-Doppler anemometry and
ensemble averaging.)

Recognizing that at any instant of time ¢ the wall
flow field consists of many interacting but coherent
structures, the mean (ensemble average) distribution i/
in velocity and other characteristics over the entire
surface is related to the instantaneous distribution ¥ in
each of a large number of samples by

f

where ¢(0, 5) is the statistical age distribution, 5is the
mean turbulent burst frequency, and P, ({;) represents
the probability distributions in the statistical initial
distribution U}; and interfacial condition uy;. (Accord-
ing to the ergodic hypothesis, time ¢ and ensemble
averages are identical for stationary processes, such
that i/ represents the time average distribution for the
steady two-dimensional turbulent flow problem under
consideration.)

The statistical age distribution is defined such that
the product ¢(6, 5)df represents the fraction of
coherent structures with age between 6 and 6 + dd.
Furthermore, ¢(f, §) must satisfy the equation

¥ = {j l//¢(9,§)d9]1’¢,(§.-)déi ©)

{ ¢(0, 5)do = 1. (10)
Jo

Based on preliminary studies, predictions for u; ob-
tained on the basis of equation (9) have been found to
be strongly dependent upon the magnitude of §, but are

fairly insensitive to the form of ¢(0, 5). Therefore, the
convenient Danckwerts [ 50] exponential distribution
is used, i.e.

$(6, 5) = sexp (—05). (11)

The instantaneous equations given by equations
(4)—(8) are transformed into the mean domain by the
use of equations (9) and (10), with the result

diy = (12)
dx; B
o To cu; &, 10P 13
slu, — . L— =V ———
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and
u; =0, aty =20 (14)
=y, aty = yy (15)
where

Ui = f UliPUh(Uli)dUli' (16)
Modeling approximations for U;; will be introduced
later. The completion of a formal three-dimensional
formulation would necessitate a transformation of
appropriate streamwise and spanwise boundary con-
ditions into the mean domain. (This complication was
dealt with in the large scale eddy simulation work of
Moin et al. [38] by the use of periodic boundary
conditions at the sides of their computational box in
the filtered large scale field.) However, pragmatic
considerations to be put forth momentarily will pro-
vide a means of circumventing this problem for many
practical cases.

Whereas the classical approaches and the large scale
eddy simulation method introduce unknown Rey-
nolds stress tensor terms in the transformed mean
flow equations, the transformation of the fundamental
instantaneous equations in the surface renewal ap-

proach introduces terms of the form s(g;, — f/;) and uj

du/0x;. The important eddy transport mechanism
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associated with the inrush process is accounted for by
the term §(@ — U,;). The term u; du;/0x; (together with
the formal boundary conditions) represents the un-
steady three-dimensional convective interaction be-
tween individual coherent structures and the sur-
rounding fluid. The contribution of this complex
convective vortex interaction to the establishment of
the mean flow field is apparently minimized by the fact

that tha 2
that the momentum influx to individual coherent

structures over small values of age 6 tends to be
balanced by the momentum efflux during old age.
Thus, it appears that the augmentation of- mean
transport by the turbulent burst process is primarily

counted for h\r the term §lu. — ..
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For steady two-dlmensmnal turbulent boundary
layer flow, w and all derivatives of mean characteristics
with respect to z are zero. For this case, the mean flow
field (i.e. i1, 5, dP/dy) is represented by the continuity
equation and the x- and y-component momentum
equations
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and accompanying boundary conditions. [Although
equation (19) provides a theoretical basis for predict-
ing 0P/dy, this equation is not needed in practice since

this term is known to be small.]
The z-component momentum equation reduces to

ow ow ow
—5Up; +u£+v-67 +wafz—=0.

Based on the physics of the problem, the z- (and y-)
component initial velocity distribution U, (and U ;)
is much smaller than the axial component U,,. With
U, , assumed to be small, equation (20) indicates that
the term u;dw/dx; is small, which reinforces the
assumption that the effects of the three-dimensional
convective interaction on the mean flow field are
secondary.

Equations (17)-(19) and appropriate boundary
conditions provide a theoretical basis for predicting
the mean turbulent characteristic %, 7, and ¢P/dy. The
formal solution of these equations in full form would
first necessitate : (1) the specification of instantaneous
streamwise and spanwise boundary conditions, (2) the
solution of the instantaneous formulation [equations
(4) and (5), initial conditions, and boundary con-

(20
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ditions] for u, v, and w, and (3) a transformation to

obtain u; du/0x; and u; dv/0x;. However, because the
convective interaction terms appear to be secondary
for many practical probiems, equation (17)}-{19) pro-
vide the basis for a simplified form of the surface
renewal model that does not require the complex
boundary condition formulation and computational
effort associated with steps (1)-(3).

To nraovide a hacic far ratianal simnlification of the
10 ProviGe a ©asis 10f rausna: sHnp:incation o1 iné
S S

modeling equations, it is noted that as § approaches

zero, the term u; du;/0x; clearly reduces to u; dit;/0x;
and equations (17)-(19) reduce to the appropriate

form for laminar conditions. Assuming that u; Ju;/¢x;
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that 62i/0x? is generally very small, the surface renewal
formulation for two-dimensional turbulent boundary
layer flow reduces to [using equation (17)]

ST — Uyy) + Pl + PL v@ _Lep (21)
éx dy &yt pox 7
i=0, aty=0 (22)
d =ty ALY = Yy (23)
=0, aty=0 (24)
and the single streamwise condition
i=U, atx=0. (25)

A practical application of this surface renewal model
formulation is now briefly reviewed.

Application : fully turbulent boundary layer flow

For fully turbulent boundary layer flows with small
pressure gradients, the effects of the convective terms
and the pressure gradient term are insignificant within
the wall region, such that the surface renewal for-
mulation given by equations (17)and (21)-(25) reduces
to the more manageable form

d%a

i—-Uy =v—y
11 vdy2

with the boundary conditions given by equations (22)
and (23). To close the model, U}, uy;, yu, and § must
be specified.

Similar simplified surface renewal model formu-
lations that neglect the effects of convective interaction
have been developed over the past few years for
turbulent energy and momentum transfer in the wall
region ([39]-[48] and others)*. These analyses differ
primarily in how the initial condition U;, and the
interfacial condition at y, are handled.

According to flow visualization studies for fully
turbulent internal flow by Popovich and Hummel
[51], the inrush process carries fluid to within various
small distances of the wall, with the mean approach
distance H ™ approximately equal to 5.0. It follows that

(26)

+In most of these analyses, the transformation associated
with equation (9) is made after the simplified instantaneous
equations are solved for u(6).
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the initial profile U;; must be random and nonlinear.
However, for practical purposes involving the develop-
ment of first order predictions for momentum transfer,
the modeling approximation
Uy =Uy = Uy, 27

is often used, where U, is uniform. Models of this type
developed by Einstein and Li [39]; Hanratty [40];
and others [41-48] lead to practical laws for u™ in the
wall region which are in basic agreement with exper-
imental data. More comprehensive models which ac-
count for the effect of the unreplenished layer of fluid at
the surface have been developed by Harriott [52];
Bullin and Duker [53]; and Thomas et al. [54, 55].
This type model, which is sometimes referred to as the
surface rejuvenation model, provides a basis for de-
veloping higher order predictions for u™ as well as
predictions for the Reynolds stress, mixing length, and
eddy diffusivity (or turbulent Prandtl number) very
near the wall.

With respect to the interfacial conditions, most
surface renewal model formulations published to date
make use of the simplification

(28)

Model closure was accomplished in the early analyses
of refs [39-47] by merely setting U, equal to the bulk
stream velocity U, (or free stream velocity U ) and by
specifying the friction factor, or by specifying u™ at a
point in the outer wall region. More recently [48],
closure has been affected by interfacing the wall model
with a classical eddy viscosity model for the turbulent
core at the point at which continuity is maintained in
u* and du*/dy"*. But the use of equation (28) in the
analyses of refs {39-48] gives rise to predictions for u*
which must be truncated at yy;. To achieve a higher
order interface that produces smooth and continuous
predictions for u* throughout the entire inner region,
the more general interfacial boundary condition is
now employed.

The solution to equations (22), (23), and (26) with

Uy = U,. gives rise to an expression for the dimen-
sionless mean velocity distribution u* (= i/U*) of the

form
ut = {ug, sinh (y*/s*) + U} [sinh (yy/s")
—sinh (y*/s*) — sinh ((yy — y")/s)]}

U= Uy, as y— x.

1
—— 29
X sinh (yy/s") 29
where s* = §v/U**. An independent relationship

between s*, U, uy,, and yy; is obtained on the
basis of the Newton law of viscous shear (i,/p = U*?
= vdu/dy|o)

=1 (30)

s
L= Giah (yggs) i+ Uit [oosh (i/s™)

-1 (31
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Three additional independent equations are written
fors*, UL, um,, and yy by requiring continuity in ™,
cu*/3y*, and *u*/dy*? at the interface between the
wall region and the turbulent core. Based on the
traditional mixing length model, the momentum equa-
tion in the overlap region for fully turbulent flow with
small pressure gradient takes the form

u’*
1+ 1*2 >—
< J oyt

where [* ~ ky*. It follows that at the interface y© =
Va4, duT/CyT and *uT /@yt ? are given by

fu’t

(’)y +

~ 1,

y/6z 02 (32)

1
u® :C%—;lny,f4 (33)
ou”* 1
TR .
St 1
o ~ — —Kygz (35)

where k >~ 0.41 for boundary layer flows.

With s* specified on the basis of experimental data,
the values of C, U}, uy,, and yy; for which u* satisfies
equations (31) and (33)-(35) can be computed by
algebraic elimination and iteration. Alternatively, with
C specified, s*, UL, uy,, and yy can be computed.
Following the second approach with C set equal to 5.0,
the hydrodynamic modeling parameters are found to
bes’ = 1/14.94%, U}t = 1493, u = 14.73,and y,; =
52.45. This prediction for s* is shown in Fig. 2 to be
compatible with experimental data for the mean
period of the turbulent burst process for boundary
layer flow with uniform free stream velocity and for
fully developed tube flow.

The overall inner law for u™ takes the form

.
u* = 1493 — 0.01196 sinh (-
14.94

. 5245 — y*
— 0.8929 sinh <—IW

1
Y2504 ——Iny*,
“ toar

>, y* = 5245 (36a)

y* & 5245, (36b)

Equation (36)is compared with experimental data and
the familar van Driest [9] equation in Fig. 3.

To complete the analysis, the inner laws can be
coupled with equations for u* obtained by classical
methods in the outer region. Predictions can then be
obtained for the Fanning friction factor f.

As suggested earlier, more comprehensive surface
renewal analyses have been developed which account
for the effect of the unreplenished layer of fluid on Uy,.
However, the simpler surface renewal analysis de-
veloped in this paper is judged to be quite adequate for
analyzing turbulent momentum transfer in the wall
region for boundary layer flows with small pressure
gradients.
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F1G. 2. Experimental data and theoretical predictions for mean period of turbulent burst. Reynolds number :

Re = D, U,/v for tube flow and Re

= 20U /v for boundary layer flow.

Type Measurement
Symbol flow Fluid location y* Method Ref.
] BL water 15 visual [59]
V| BL water 15 visual [60]
A BL air wall anemometer [63]
o BL air wall anemometer [64]
[ ] BL air >0 anemometer [61]
A BL water >0 anemometer [62]
° TF trichloro- >0 visual [7]
ethylene

O TF air wall pressure [45]
O TF air wall anemometer [45]
A TF air 2 anemometer [45]
v TF tetraline wall anemometer [45]
+ TF air 7.56 anemometer [65]
x TF water >0 anemometer [66]

TF, fully developed tube flow.
BL, boundary layer flow over flat plate.

Experimental data by

251" Anderson er @' [ 571

| van Driest L9 J

15
+
E]
10
5
0 I I ! L ] J
2 5 10 50 100 1000
y+

F1G. 3. Experimental data and inner laws for u™ for turbulent
boundary layer flow with uniform free stream velocity.

CONCLUSION

Of the models that have been developed for wall
turbulence, the transport equation and large eddy
simulation methods appear to be in the earliest stages
of development, involve the highest degree of em-
piricism, and necessitate the greatest computer time

and storage. The one-equation K transport equation
model is the only one of these advanced approaches
that have been sufficiently tested in the wall region, but
even this method involves excessive computer costs
[56]. Because of computational considerations and
because of the complicated nonisotropic nature of
turbulence in the wall region, it may be best to reserve
the advanced turbulence models for use in the turbu-
lent core.

The damping factor approach has been of great
value in the early years of wall turbulence model
development, but appears to be too artificial to be
extended further.

The simplest, least empirical, and most compu-
tationally efficient of the approaches to modeling wall
turbulence is the surface renewal method. This model
of the turbulent burst phenomenon is felt to provide a
practical approach to analyzing transport within the
wall region. The analysis developed in this paper for
fully turbulent boundary layer flow with small press-
ure gradients gives rise to a convenient analytical
inner law for u* which is in excellent agreement with
experimental data. When interfaced with a traditional
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mixing length representation for the turbulent core,
this approach requires the specification of the single
wall modeling parameter s*. With the parameter C in
the overlap law specified instead of s*, the modeling
predictions for the dimensionless mean burst fre-
quency s are compatible with experimental data.
The general surface renewal formulation developed
in this paper is felt to provide a fundamental basis for
generalization to account for the major effects of
complicating factors such as strong adverse and favor-
able pressure gradients, transpiration, and heat and
mass transfer. In this connection, the surface renewal
approach provides a means of modeling the complex
three-dimensional convective vortex interaction be-
tween large scale coherent structures having random
phases in the wall region. The formal inclusion of the
convective interaction term u; Cu,;/Cx; in the analysis
will require the solution of the instantaneous for-
mulation for u, v, and w and statistical transformation.

Parenthetically, the term u; u;/¢x; accounts for con-
vection to coherent structures that are created by the
inrush process but does not account for the eddy
transport associated with the inrush process itself.
[The inrush eddy transport mechanism is modeled by
the term i — Uy ).] Because measurements for fluc-
tuating components (particularly v") are dominated by

terms of the traditional Reynolds stress by the use of
mean and fluctuating components would appear to
have no physical basis.
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UN MODELE DE BOUFFEE TURBULENTE POUR LA TURBULENCE PARIETALE EN
ECOULEMENT DE COUCHE LIMITE TURBULENTE ET BIDIMENSIONNELLE

Résumé—Basé sur une analyse des approches modernes qui ont été developpées pour modéliser la
turbulence, un modéle de mécanisme de transport associé au phénoméne de bouffée turbulente fournit une
base pratique et la plus solide pour une généralisation. Cette approche est utilisée pour formuler un modéle
général pour le transfert de quantité de mouvement dans la région pariétale d’une couche limite turbulente
bidimensionnelle. L'attention est focalisée sur les implications pratiques de ce modéle général des bouffées et
une application est faite a 'écoulement pleinement turbulent avec de faibles gradients de pression.

EIN MODELL DES TURBULENTEN BERSTENS DER WANDTURBULENZ FUR
ZWEIDIMENSIONALE TURBULENTE GRENZSCHICHTSTROMUNG

Zusammenfassung—Auf der Grundlage moderner Naiherungsverfahren fiir die Berechnung der

Wandturbulenz wurde ein Modell des Transportmechanismus, das mit dem Phédnomen des turbulenten

Berstens zusammenhingt, als die solideste und praktischste Basis fiir eine Verallgemeinerung ausgewdhlt.

Hiervon ausgehend wird ein allgemeines Modell fiir die Impulsiibertragung innerhalb der Wandregion

zweidimensionaler turbulenter Grenzschichtstromungen formuliert. Dabei richtet sich das Interesse auch

auf praktische Folgerungen aus diesem allgemeinen Modell des turbulenten Berstens, und es wird auf
vollstindig turbulente Stromung bei kleinen Druckgradienten angewandt.
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MOJEJbL NMPUCTEHHOW TYPBVJEHTHOCTU MPU ABYMEPHOM TYPBYJEHTHOM
TEYEHWH B MOI'PAHUYHOM CJIOE, OCHOBAHHASA HA ABJIEHUU «BbIBPOCA»

Annotauns — Ha ocHose nposeaeHHOTo 0030pa COBPEMEHHBIX METOAOB MOJAECIIHPOBAHUS MPHCTEHHOM

TypOyneHTHOCTH pa3paboTaHa Moje/lb MeXaHM3Ma MepeHoca npH TypOyreHTHOM BbIOpoOCe, MO3BOJA-

01as NPOBOANTL TOYHLIE U PAKTUYECKH TONIE3HbIE 00061LeHHs. MeTon ucnonb3osaH ans GopMyu-

POBKH oDileit MoJenn nepeHoca MMIYJbCa B NPUCTEHHOH 06J1aCTH NpH ABYMEPHOM TYpPOYJIEHTHOM

TEYeHHH B MOrpaHuYHOM cioe. Ocoboe BHUMaHKe 0OpalleHO Ha BO3MOXHOCTb NPAKTHYECKOTO UCMOib-

30BaHHS NPEMNIOXEHHOR MoaeH TypOyaeHTHoro BuribGpoca. Ha ee ocHOBe npoBeneH pacueT NOJHOCTbIO
Pa3BUTOrO TYpOYNEHTHOrO TeYEHUs NpH HEOONLUIMX TPAUEHTAX [1ABEHHS.



